\(\int \frac {A+B \log (\frac {e (a+b x)}{c+d x})}{a g+b g x} \, dx\) [92]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 30, antiderivative size = 80 \[ \int \frac {A+B \log \left (\frac {e (a+b x)}{c+d x}\right )}{a g+b g x} \, dx=-\frac {\log \left (-\frac {b c-a d}{d (a+b x)}\right ) \left (A+B \log \left (\frac {e (a+b x)}{c+d x}\right )\right )}{b g}+\frac {B \operatorname {PolyLog}\left (2,1+\frac {b c-a d}{d (a+b x)}\right )}{b g} \]

[Out]

-ln((a*d-b*c)/d/(b*x+a))*(A+B*ln(e*(b*x+a)/(d*x+c)))/b/g+B*polylog(2,1+(-a*d+b*c)/d/(b*x+a))/b/g

Rubi [A] (verified)

Time = 0.15 (sec) , antiderivative size = 80, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {2542, 2458, 2378, 2370, 2352} \[ \int \frac {A+B \log \left (\frac {e (a+b x)}{c+d x}\right )}{a g+b g x} \, dx=\frac {B \operatorname {PolyLog}\left (2,\frac {b c-a d}{d (a+b x)}+1\right )}{b g}-\frac {\log \left (-\frac {b c-a d}{d (a+b x)}\right ) \left (B \log \left (\frac {e (a+b x)}{c+d x}\right )+A\right )}{b g} \]

[In]

Int[(A + B*Log[(e*(a + b*x))/(c + d*x)])/(a*g + b*g*x),x]

[Out]

-((Log[-((b*c - a*d)/(d*(a + b*x)))]*(A + B*Log[(e*(a + b*x))/(c + d*x)]))/(b*g)) + (B*PolyLog[2, 1 + (b*c - a
*d)/(d*(a + b*x))])/(b*g)

Rule 2352

Int[Log[(c_.)*(x_)]/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-e^(-1))*PolyLog[2, 1 - c*x], x] /; FreeQ[{c, d, e
}, x] && EqQ[e + c*d, 0]

Rule 2370

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)/(x_))^(q_.)*(x_)^(m_.), x_Symbol] :> Int[(e + d*
x)^q*(a + b*Log[c*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[m, q] && IntegerQ[q]

Rule 2378

Int[((a_.) + Log[(c_.)*(x_)^(n_)]*(b_.))/((x_)*((d_) + (e_.)*(x_)^(r_.))), x_Symbol] :> Dist[1/n, Subst[Int[(a
 + b*Log[c*x])/(x*(d + e*x^(r/n))), x], x, x^n], x] /; FreeQ[{a, b, c, d, e, n, r}, x] && IntegerQ[r/n]

Rule 2458

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_.) + (g_.)*(x_))^(q_.)*((h_.) + (i_.)*(x_))
^(r_.), x_Symbol] :> Dist[1/e, Subst[Int[(g*(x/e))^q*((e*h - d*i)/e + i*(x/e))^r*(a + b*Log[c*x^n])^p, x], x,
d + e*x], x] /; FreeQ[{a, b, c, d, e, f, g, h, i, n, p, q, r}, x] && EqQ[e*f - d*g, 0] && (IGtQ[p, 0] || IGtQ[
r, 0]) && IntegerQ[2*r]

Rule 2542

Int[((A_.) + Log[(e_.)*((a_.) + (b_.)*(x_))^(n_.)*((c_.) + (d_.)*(x_))^(mn_)]*(B_.))/((f_.) + (g_.)*(x_)), x_S
ymbol] :> Simp[(-Log[-(b*c - a*d)/(d*(a + b*x))])*((A + B*Log[e*((a + b*x)^n/(c + d*x)^n)])/g), x] + Dist[B*n*
((b*c - a*d)/g), Int[Log[-(b*c - a*d)/(d*(a + b*x))]/((a + b*x)*(c + d*x)), x], x] /; FreeQ[{a, b, c, d, e, f,
 g, A, B, n}, x] && EqQ[n + mn, 0] && NeQ[b*c - a*d, 0] && EqQ[b*f - a*g, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {\log \left (-\frac {b c-a d}{d (a+b x)}\right ) \left (A+B \log \left (\frac {e (a+b x)}{c+d x}\right )\right )}{b g}+\frac {(B (b c-a d)) \int \frac {\log \left (\frac {-b c+a d}{d (a+b x)}\right )}{(a+b x) (c+d x)} \, dx}{b g} \\ & = -\frac {\log \left (-\frac {b c-a d}{d (a+b x)}\right ) \left (A+B \log \left (\frac {e (a+b x)}{c+d x}\right )\right )}{b g}+\frac {(B (b c-a d)) \text {Subst}\left (\int \frac {\log \left (\frac {-b c+a d}{d x}\right )}{x \left (\frac {b c-a d}{b}+\frac {d x}{b}\right )} \, dx,x,a+b x\right )}{b^2 g} \\ & = -\frac {\log \left (-\frac {b c-a d}{d (a+b x)}\right ) \left (A+B \log \left (\frac {e (a+b x)}{c+d x}\right )\right )}{b g}-\frac {(B (b c-a d)) \text {Subst}\left (\int \frac {\log \left (\frac {(-b c+a d) x}{d}\right )}{\left (\frac {b c-a d}{b}+\frac {d}{b x}\right ) x} \, dx,x,\frac {1}{a+b x}\right )}{b^2 g} \\ & = -\frac {\log \left (-\frac {b c-a d}{d (a+b x)}\right ) \left (A+B \log \left (\frac {e (a+b x)}{c+d x}\right )\right )}{b g}-\frac {(B (b c-a d)) \text {Subst}\left (\int \frac {\log \left (\frac {(-b c+a d) x}{d}\right )}{\frac {d}{b}+\frac {(b c-a d) x}{b}} \, dx,x,\frac {1}{a+b x}\right )}{b^2 g} \\ & = -\frac {\log \left (-\frac {b c-a d}{d (a+b x)}\right ) \left (A+B \log \left (\frac {e (a+b x)}{c+d x}\right )\right )}{b g}+\frac {B \text {Li}_2\left (\frac {b (c+d x)}{d (a+b x)}\right )}{b g} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 95, normalized size of antiderivative = 1.19 \[ \int \frac {A+B \log \left (\frac {e (a+b x)}{c+d x}\right )}{a g+b g x} \, dx=\frac {\log (g (a+b x)) \left (-B \log (g (a+b x))+2 \left (A+B \log \left (\frac {e (a+b x)}{c+d x}\right )+B \log \left (\frac {b (c+d x)}{b c-a d}\right )\right )\right )+2 B \operatorname {PolyLog}\left (2,\frac {d (a+b x)}{-b c+a d}\right )}{2 b g} \]

[In]

Integrate[(A + B*Log[(e*(a + b*x))/(c + d*x)])/(a*g + b*g*x),x]

[Out]

(Log[g*(a + b*x)]*(-(B*Log[g*(a + b*x)]) + 2*(A + B*Log[(e*(a + b*x))/(c + d*x)] + B*Log[(b*(c + d*x))/(b*c -
a*d)])) + 2*B*PolyLog[2, (d*(a + b*x))/(-(b*c) + a*d)])/(2*b*g)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(228\) vs. \(2(79)=158\).

Time = 1.15 (sec) , antiderivative size = 229, normalized size of antiderivative = 2.86

method result size
parts \(\frac {A \ln \left (b x +a \right )}{g b}-\frac {B \left (a d -c b \right ) e \left (-\frac {d^{2} \ln \left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right )^{2}}{2 \left (a d -c b \right ) b e}+\frac {d^{3} \left (\frac {\operatorname {dilog}\left (-\frac {\left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right ) d -b e}{b e}\right )}{d}+\frac {\ln \left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right ) \ln \left (-\frac {\left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right ) d -b e}{b e}\right )}{d}\right )}{\left (a d -c b \right ) b e}\right )}{g \,d^{2}}\) \(229\)
derivativedivides \(-\frac {e \left (a d -c b \right ) \left (-\frac {d^{2} A \left (-\frac {\ln \left (b e -\left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right ) d \right )}{b e}+\frac {\ln \left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right )}{b e}\right )}{g \left (a d -c b \right )}-\frac {d^{2} B \left (-\frac {d \left (\frac {\operatorname {dilog}\left (-\frac {\left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right ) d -b e}{b e}\right )}{d}+\frac {\ln \left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right ) \ln \left (-\frac {\left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right ) d -b e}{b e}\right )}{d}\right )}{b e}+\frac {\ln \left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right )^{2}}{2 b e}\right )}{g \left (a d -c b \right )}\right )}{d^{2}}\) \(304\)
default \(-\frac {e \left (a d -c b \right ) \left (-\frac {d^{2} A \left (-\frac {\ln \left (b e -\left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right ) d \right )}{b e}+\frac {\ln \left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right )}{b e}\right )}{g \left (a d -c b \right )}-\frac {d^{2} B \left (-\frac {d \left (\frac {\operatorname {dilog}\left (-\frac {\left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right ) d -b e}{b e}\right )}{d}+\frac {\ln \left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right ) \ln \left (-\frac {\left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right ) d -b e}{b e}\right )}{d}\right )}{b e}+\frac {\ln \left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right )^{2}}{2 b e}\right )}{g \left (a d -c b \right )}\right )}{d^{2}}\) \(304\)
risch \(\frac {A \ln \left (b x +a \right )}{g b}+\frac {B d \ln \left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right )^{2} a}{2 g \left (a d -c b \right ) b}-\frac {B \ln \left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right )^{2} c}{2 g \left (a d -c b \right )}-\frac {B d \operatorname {dilog}\left (-\frac {\left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right ) d -b e}{b e}\right ) a}{g \left (a d -c b \right ) b}+\frac {B \operatorname {dilog}\left (-\frac {\left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right ) d -b e}{b e}\right ) c}{g \left (a d -c b \right )}-\frac {B d \ln \left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right ) \ln \left (-\frac {\left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right ) d -b e}{b e}\right ) a}{g \left (a d -c b \right ) b}+\frac {B \ln \left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right ) \ln \left (-\frac {\left (\frac {b e}{d}+\frac {\left (a d -c b \right ) e}{d \left (d x +c \right )}\right ) d -b e}{b e}\right ) c}{g \left (a d -c b \right )}\) \(416\)

[In]

int((A+B*ln(e*(b*x+a)/(d*x+c)))/(b*g*x+a*g),x,method=_RETURNVERBOSE)

[Out]

A/g*ln(b*x+a)/b-B/g/d^2*(a*d-b*c)*e*(-1/2/(a*d-b*c)*d^2/b/e*ln(b*e/d+(a*d-b*c)*e/d/(d*x+c))^2+1/(a*d-b*c)*d^3/
b/e*(dilog(-((b*e/d+(a*d-b*c)*e/d/(d*x+c))*d-b*e)/b/e)/d+ln(b*e/d+(a*d-b*c)*e/d/(d*x+c))*ln(-((b*e/d+(a*d-b*c)
*e/d/(d*x+c))*d-b*e)/b/e)/d))

Fricas [F]

\[ \int \frac {A+B \log \left (\frac {e (a+b x)}{c+d x}\right )}{a g+b g x} \, dx=\int { \frac {B \log \left (\frac {{\left (b x + a\right )} e}{d x + c}\right ) + A}{b g x + a g} \,d x } \]

[In]

integrate((A+B*log(e*(b*x+a)/(d*x+c)))/(b*g*x+a*g),x, algorithm="fricas")

[Out]

integral((B*log((b*e*x + a*e)/(d*x + c)) + A)/(b*g*x + a*g), x)

Sympy [F]

\[ \int \frac {A+B \log \left (\frac {e (a+b x)}{c+d x}\right )}{a g+b g x} \, dx=\frac {\int \frac {A}{a + b x}\, dx + \int \frac {B \log {\left (\frac {a e}{c + d x} + \frac {b e x}{c + d x} \right )}}{a + b x}\, dx}{g} \]

[In]

integrate((A+B*ln(e*(b*x+a)/(d*x+c)))/(b*g*x+a*g),x)

[Out]

(Integral(A/(a + b*x), x) + Integral(B*log(a*e/(c + d*x) + b*e*x/(c + d*x))/(a + b*x), x))/g

Maxima [F]

\[ \int \frac {A+B \log \left (\frac {e (a+b x)}{c+d x}\right )}{a g+b g x} \, dx=\int { \frac {B \log \left (\frac {{\left (b x + a\right )} e}{d x + c}\right ) + A}{b g x + a g} \,d x } \]

[In]

integrate((A+B*log(e*(b*x+a)/(d*x+c)))/(b*g*x+a*g),x, algorithm="maxima")

[Out]

-B*(log(b*x + a)*log(d*x + c)/(b*g) - integrate((b*d*x*log(e) + b*c*log(e) + (2*b*d*x + b*c + a*d)*log(b*x + a
))/(b^2*d*g*x^2 + a*b*c*g + (b^2*c*g + a*b*d*g)*x), x)) + A*log(b*g*x + a*g)/(b*g)

Giac [F]

\[ \int \frac {A+B \log \left (\frac {e (a+b x)}{c+d x}\right )}{a g+b g x} \, dx=\int { \frac {B \log \left (\frac {{\left (b x + a\right )} e}{d x + c}\right ) + A}{b g x + a g} \,d x } \]

[In]

integrate((A+B*log(e*(b*x+a)/(d*x+c)))/(b*g*x+a*g),x, algorithm="giac")

[Out]

integrate((B*log((b*x + a)*e/(d*x + c)) + A)/(b*g*x + a*g), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \log \left (\frac {e (a+b x)}{c+d x}\right )}{a g+b g x} \, dx=\int \frac {A+B\,\ln \left (\frac {e\,\left (a+b\,x\right )}{c+d\,x}\right )}{a\,g+b\,g\,x} \,d x \]

[In]

int((A + B*log((e*(a + b*x))/(c + d*x)))/(a*g + b*g*x),x)

[Out]

int((A + B*log((e*(a + b*x))/(c + d*x)))/(a*g + b*g*x), x)